Photo:

Steven Street

Will answer every question he's been asked!

Favourite Thing: Discovering something new! The feeling of being the first person ever to see, learn or make something is amazing. Definitely worth it for all of the times that things don’t work!

My CV

Education:

The Douay Martyrs School (Secondary) 2000-2007, The University of Reading (Undergraduate) 2007-2011, The University of Bristol (PhD) 2012-present

Qualifications:

GCSE: 3A*s & 7As, AS Level: History (C), A-Level: Maths (B), Applied ICT (B), Chemistry (D… with an E at AS!), Undergraduate Masters Degree: First Class MChem Chemistry with honours. Member of the Royal Society of Chemistry (MRSC). I’m also about to complete my PhD in Chemistry in the next few months!

Work History:

Woolworths (16-17yo), A Garden Centre (17-18yo), Reading Uni Students Union Bar / Pub (18-22yo), A random country pub (19-22yo), CEM Analytical Services (2011-2012, Junior Analyst), STEM Ambassador (2012-present), CIC Cartuja – Sevilla, Spain (2014), Kyoto University, Japan (2014), Novartis Institute for Biomedical Research – Basel, Switzerland (2015)

Current Job:

Final Year PhD Student at the Bristol Chemical Synthesis Centre for Doctoral Training

Employer:

The University of Bristol

About Me

A fun loving, live life to the max kinda guy who has somehow ended up becoming a chemist working on developing new anti-cancer drugs… (and absolutely loves it!)

  1. I was born in Ruislip, London, 27 years ago. That makes me exactly 9 school years above sixth form / year 13 at school!
  2. I currently live with my crazy, awesome girlfriend in Bristol. I’ve lived in Bristol for 4 years now!
  3. When I was younger, I had no idea what I wanted to do when I was older.
  4. My two main loves (aside from my girlfriend) are playing computer games and cars.
  5. I’m a massive PS4 fan and am currently obsessed with Fallout 4.
  6. I drive a 2000 Alfa Romeo GTV, which is probably the least practical car ever, but it sure looks amazing! ūüėÄ
  7. I have a black belt in Taekwondo, and really enjoy martial arts!
  8. I have got to travel to some pretty cool places being a scientist. I’ve lived in Switzerland for 3 months, Spain for 2 months, and even Japan for 3 months!
  9. I got stuck in a blizzard on top of a mountain in Switzerland, which was scary!
  10. I also went travelling in between my undergraduate degree and my PhD, travelling around south east Asia, spending time in Singapore, Malaysia and Thailand!
  11. Remember the band Wheatus? (I’m just a teenage dirtbag baby…) Well I have done their washing!

My Work

making new anti-cancer drugs from sugars that don’t kill healthy cells.

Cancer is one of the biggest killers in the developed world. It’s responsible for 28% of deaths in the UK, so 1 in every 3 people will die from cancer. it’s also predicted that 1 in 2 people born after 1960 will contract some form of cancer in their lifetime (read more:¬†http://www.cancerresearchuk.org/health-professional/cancer-statistics/risk¬†).

But what exactly is cancer?

Cancer is a disease which is caused by mutations that happen to the cells inside your body. When a cell becomes cancerous, lots of small changes happen. This is why cancer remains such a challenging disease to treat. You have to find a way of killing cancer cells while leaving healthy cells alone. This is very hard because the two cells used to be identical! This means that we need to look at all of the small changes that happen to cancer cells, to try and work out ways of targeting these small changes to kill the cancer cells without affecting any of the very similar healthy cells. This is a tough challenge!

One of these changes makes the cells start growing uncontrollably. This also causes more problems for treatments, as some cancer cells can divide as quickly as 24 hours. This means that if left unchecked the cancer tumor will double in size every day! This is why cancer drugs (called chemotherapy drugs) have to be 100% effective. Even if you have a drug that can kill 99.9% of cancer cells, that will always leave a few cells which can continue to grow and divide, and the tumor will regrow over time.

What about current chemotherapy drugs?

Most current chemotherapy drugs just aren’t that good at selectively killing cancer cells. They usually also kill healthy cells too, and the general idea is to target cells that divide quickly, with the hope of killing the cancer cells¬†before also killing the person. This is why people normally loose their hair when undergoing chemotherapy – you hair is one of the fastest growing tissues in your body, so the drugs also stop your hair from growing.

The good news is that there are thousands of scientists all over the world working on many different ways to treat cancer. A lot of research into new cancer drugs involves¬†trying to selectively kill the cancer cells, and leave healthy cells alone! Already we have come very far, just compare¬†one of the first chemotherapy drugs, Mustine to a modern medicine such as Imatinib. Mustine is also known as ‘mustard gas’ and is a chemical weapon that also happens to be used as an anti-cancer drug! It’s horribly toxic. Imatinib is a new selective anti-cancer drug, and has saved a great many peoples lives whilst being much less toxic than older drugs. The downside? It’s still under patent protection and is quite expensive (but that’s another story!)

Many non selective anti-cancer drugs work by targeting DNA (like Mustine), and stop the two strands of your DNA from separating, which stops your cells from dividing and growing. These bind to all of the DNA in your body though, stopping healthy cells from dividing too.

What am I working on?

I am working on targeting a specific DNA sequence¬†inside your body. These¬†sequences, called telomeres¬†are used by an enzyme called telomerase that is only present in cancer cells. Telomerase is used by ~85% of cancers to make them immortal. Yep, did you know that cancer cells are immortal? As long as they get the food they need to survive, they will never die from old age. And it’s all due to this enzyme, telomerase! I am making small molecules that can ‘bind’ to these DNA sequences, making them form a special structure called a G-quadruplex. This special structure stops the enzyme from working, and causes damage to the DNA leading to the death of the cell. The best part? Normal cells don’t have telomerase as we are mortal, so these structures shouldn’t affect healthy cells, making this in theory a selective anti-cancer treatment.

This is an extremely new area of research though. We didn’t know that these G-quadruplex structures even exist inside our bodies until 2013! We still don’t know exactly what they are for, though they occur in almost all of our genes. Currently, there are no drugs available that work by this mechanism. This is because there are two man problems currently:

  1. Getting them to target one G-quadruplex: There are over 700,000 different G-quadruplex DNA structures inside our genome, and we only want to bind to one of them! Making a molecule that can only bind to one G-quadruplex is quite a big challenge.
  2. Getting them to go where you want: It’s very hard to make these molecules to go to the right locations in your body, and go inside your cells, and get to the right place inside your cells to work. This is also quite a big problem to solve!

I am using sugars to help solve these problems. Sugars are molecules with rings, and have lots of hydroxyl groups (OHs). These can be used to help them bind to DNA, and different sugars can potentially bind to different DNA structures, so we just need to find the right combination of sugars to work. Sugars are also the main source of energy for our bodies, so we are used to transporting them around and taking them to specific loactions inside your cells. Again, we just need to find the right combination of sugars to do this!

How much progress have I made?

I’ve been working on this for 3.5 years now. I’ve managed to discover¬†the most selective molecule ever known to bind to the¬†G-quadruplex structure in your telomeres. The down side is that this¬†molecule isn’t toxic to cancer cells… We think this is because they are being degraded inside the cell. Now, we are working on trying to fix this problem! I’ve also discovered another molecule which is quite selective for the same G-quadruplex. This molecule appears to be more active than the conventional chemotherapy drug doxorubicin, yet is 3 times less toxic to healthy cells! We are looking into how it does this at the moment too.

Do you have any questions? Fire away!

My Typical Day

Planning experiments, doing experiments and then trying to work out what happened in those experiments!

Being a scientist means choosing your own working hours. Some days I¬†come in later, and others I come in early. Typically I’ll work from 9am until 6pm.

The first thing I’ll say is that every day is different. No two days are the same, and it all depends on how my research is going and what I was doing the day before! Overall¬†I’ll be making new molecules, piece by piece by doing reactions. This is kind of like playing with lego, except your working with extremely small things that you cannot even see! You build up each molecule, one brick at a time till you have your finished product. This involves planning new experiments, setting them up, then when the reactions are done I’ll purify them to get just the molecule I want on it’s own! Then I’ll analyse them to check they are what I think they are, and then test them in other experiments.

I’m a synthetic organic chemist, which basically means that I like building things out of carbon atoms. I would say I spend roughly 50% of my time in the office and 50% of my time in the lab, so if you don’t like the idea of sitting at a desk all day, then being a scientist is quite good! ūüėÄ My lab time is split between doing reactions (“making things”) and analyzing / testing things that I’ve made.

A typical day could be as follows:

I’ll start the day at my desk, checking my emails and catching up on new publications and developments in my area of research. Keeping up to date¬†about new developments is important! Then, I’ll probably get some new data about the compounds I was making the day before to analyze (Nuclear Magnetic Resonance Spectroscopy or NMR and Mass Spec for those of you who are doing A-Levels in Chemistry). Analyzing new data to work out if a reaction has worked can best be described as like trying to solve a puzzle, except you don’t know the answer because nobody has ever seen this particular puzzle before.

Once I’m confident that I have made what I tried to make the day before, I can start planning a new experiment with that molecule. Once it’s all planned out, I head into the lab to my fume hood to set up the reaction. The best way to describe synthetic chemistry is like cooking, but with lots of very expensive strange pieces of machinery, and you definitely don’t want to eat what you’ve made at the end!

This involves getting out all manner if interesting pieces of glassware, and then mixing up various toxic, explosive, flammable and downright weird chemicals together in that¬†glassware.¬†This is what most people think of when they think of a chemist, though there are many other types of chemist… we don’t all mix stuff up in glassware!

Once I’ve set up some reactions, I can have lunch, and do some other stuff. That might be writing a presentation for a conference (big meeting full of scientists), or writing a paper on your research!

In the afternoon, my reaction might be done so I’ll be back in the lab, and trying to isolate my newly made molecule. This involved quite a wide range of different techniques and other chemicals etc… For me it normally ends with me using our ¬£40,000 Preparative High Performance Liquid Chromatography System, which is basically a fancy machine that can separate different molecules from each other. Once I have that, I will remove all of the solvent using another piece of fancy equipment called a rotary evaporator.

I might have to go and deal with some of the cancer cells that I’ve been growing too… This can be described as a mixture between growing your own plants and having your own children… you have to feed them and take care of them otherwise they will stop growing and die!

At the¬†end of my day, I’ll probably be analyzing the products of my reactions, by running experiments on one of Bristol University’s ¬£500,000+ NMR spectrometers, ready to get the data back the next day. You get to use quite a lot of expensive equipment as a scientist!

So that’s a typical day for me. This doesn’t even mention all of the other things that I might be doing though, like running modelling simulations on a supercomputer, testing my compounds on the cancer cell lines, giving presentations to school children or other scientists, teaching undergraduate students in teaching labs or testing my compounds in¬†all kinds of interesting assays! There is seriously so many different things to do that you are never bored!

 

What I'd do with the money

I would like to create a series of short videos, where scientists like myself explain our research in a few minutes, hopefully helping young people such as yourselves decide which subjects you would like to study in the future!

When I was at school, nobody ever spoke to me about what jobs different subjects can lead to. This was especially the case in science and engineering, where a lot of jobs are in research, which is incredibly interesting and exciting and can change society and save peoples lives! Yet nobody ever tells you exactly what research is. I want to change this.

The first time I ever spoke to somebody who was actually a scientist was when I was looking around universities, which was far too late in my opinion! I want to change this too.

I think it would be useful for young people to be able to talk to real scientists and engineers, and find out the what they work on, and what their jobs are like. This is especially important in subjects like chemistry where what you learn at school is very different to what you can do in research, and in school might not seem as exciting or useful as it actually is!

I think a lot of people who would make great scientists choose to not study science at school because they don’t know where it can take¬†them.

THIS I want to change.

My idea for the money would involve getting lots of scientists and engineers from all over my university to make short, 2-5 minute videos where they explain what they are researching, and why it is important. All of these videos will then be published on a website and categorised by school subject, so that young people such as yourselves can hear from actual scientists what they do. You can learn for example about how studying chemistry can lead you to work on things like solutions to climate change, developing new drugs to combat disease or making new materials and perfumes!

To do this, I would firstly buy a video camera that would allow PhD students from all over Bristol university in every research subject to record short videos about their research. These videos will then be categorised according to which school subject they fall under, and then put on a website where you can log on and browse research by each subject! There can also be a youtube channel for you to browse.

Overall the money would go on:

  1. a video camera
  2. making and hosting a simple website (my girlfriend is a web developer so this is simpler than you might think!)

This means hopefully when you have to make decisions at school about which subjects you want to take, you can make a more informed decision than I did!

 

 

My Interview

How would you describe yourself in 3 words?

Happy, Excited, Curious!

Who is your favourite singer or band?

Blink-182, Eminem, Queen, Coldplay and Funeral for a Friend!

What's your favourite food?

Probably a good old fashioned roast dinner

What is the most fun thing you've done?

Hmm…. tough question! Possibly scuba diving off the coast of Koh Phi-Phi in Thailand?

What did you want to be after you left school?

I never really knew what I wanted to do/be… (I’m still working it out now!) though I knew I wanted to go to university. While at school I briefly wanted to be a DJ… that didn’t quite work out!

Were you ever in trouble at school?

Not really… though I did get a few detentions. I might be an engineer today if it wasn’t for one of them!

What was your favourite subject at school?

History, though I also enjoyed maths, IT and drama!

What's the best thing you've done as a scientist?

I Met the Emperor of Japan!

What or who inspired you to become a scientist?

An accident involving me being hit by a car when I was 17 led me to want to help make a difference to peoples lives, and make the world a better place for us all to live in. For a long time I didn’t really know how i wanted to do that though… It wasn’t until I did a lot of soul searching at the end of university that I decided science was the best way for me to achieve this! Since then, I’ve never looked back :)

If you weren't a scientist, what would you be?

A Computer Scientist, or an Engineer…. I also love cars so anything to do with that would be great. Possibly also a Spy too!

If you had 3 wishes for yourself what would they be? - be honest!

1) To not suck at every sport known to mankind? Also 2) time travel and 3) The ability to fly!

Tell us a joke.

An Englishman, Irishman and Scotsman walked into a bar….. They all had to leave because the Englishman wanted to go! #Brexit

Other stuff

Work photos:

Science takes you to cool places. This is me at dawn at the summit of Mount Fuji, the tallest mountain in Japan and an active volcano!

myimage1

This is my research group. My supervisor is sitting down on the silver chair in the bottom left. We are all working on different things, but all involving carbohydrates!

myimage2

This is me presenting my research at the International Carbohydrate Conference in New Orleans, USA earlier on this year. I’ve given presentations to audiences of over 100 people!

myimage3

This is me presenting a poster on my research to MPs at the houses of parliament. You get to visit lots of cool places… It’s not all just about being in the lab!

myimage4

This is my fume hood in the lab. This is where I  do most of my reactions to make new molecules!

myimage5

This is our lab. There are 12 of the fume hoods like mine in here, and house all of the people in my research group! We have lots of expensive equipment in here. To the right is our office. My desk is the one with the Japan flag!

myimage6

This is the view from our lab. We are on the top of a hill that overlooks Bristol, so you get some spectacular views, especially from the 5th floor! I’m on the 3rd floor, and have a nice view of the ugly drama building instead ūüėõ Sadly this was taken on a wet & rainy day the other day, so the view doesn’t look too nice!

myimage7

This is one of my new anti-cancer drugs, the best¬†one! It’s fluorescent green when you shine UV light on it, which is quite cool! I am the first and only person to ever make this molecule, and I have the entire world’s supply in my fume hood!

myimage8

These plates contain living, growing breast cancer cells that i’m about to test my new drugs out on. The pink stuff is the ‘media’ which is basically food for cells!

myimage9

This is what I look like when I’m in the lab! Because we work with dangerous, unknown, toxic and sometimes explosive chemicals, we have to wear safety glasses to protect our eyes, and lab coats to protect our bodies!

myimage10